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ABSTRACT: A novel polyether polyurethane/clay nano-
composite was synthesized using polytetramethyleneglycol
(PTMEG), 4,4'-diphenylmethane diisocyanate (MDI), 1,6-
hexamethylenediamine, and modified Na"-montmorillon-
ite. Here, organic-modified montmorillonite (O-MMT) was
formed by applying 1,6-hexamethylenediamine as a swell-
ing agent to treat Na"-montmorillonite. The X-ray analysis
showed that exfoliation occurred for the higher O-MMT
content (40 wt %) in the polymer matrix. Mechanical analy-
sis indicated that when the O-MMT was used as chain
extender to replace a part of 1,2-diaminopropane to form

PU/clay nanocomposites, the strength and strain-at-break of
the polymer were enhanced with increased content of O-
MMT in the matrix. When the O-MMT content attained
about 5%, the tensile strength and elongation at break were
over two times that of the pure PU. The thermal stability and
the glass-transition of O-MMT/PU nanocomposites also in-
creased with increasing the O-MMT content. © 2004 Wiley
Periodicals, Inc. ] Appl Polym Sci 94: 534-541, 2004
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thane; intercalation; organoclay

INTRODUCTION

A nanocomposite is a composite material having more
than one solid phase with a dimension in the 1
~ 20nm range."”* Recently, polymer/clay nanocom-
posites have attracted a great deal of attention. For
example, polymer nanocomposites, such as poly-
amide,”” polyepoxy,®® polystyrene,'®*! poly(ethylene
oxide),'">"* polycaprolactone,'* polyimide,'">™ and
polyurethane (PU)*°~2® with montmorillonite or lay-
ered silicates have been developed. Because of the
much stronger interfacial forces between the nanom-
eter-sized domains, such nanocomposites exhibit
many better physical properties, such as thermal, me-
chanical, and barrier properties, than those of conven-
tional composites.

PU/clay nanocomposites were first reported by Pin-
navaia and colleagues.”®~*” The authors focused on the
compatibility between organic-clay and polyols, and
found that montmorillonite clay, exchanged with long
chain onium ions (carbon number = 12), had good
compatibility. It was also found that the clay nanolay-
ers were uniformly dispersed in the polymer matrix
and nanolayer exfoliation was achieved, and the me-
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chanical properties and thermal stability of PU/clay
nanocomposites were increased.

The aim of this work was to design a new polyether
polyurethane nanocomposite based on organic-modi-
fied montmorillonite (O-MMT) employed as chain ex-
tender in the synthetic process. In our procedure, 1,6-
hexamethylenediamine (carbon number < 12, with
two -NH, groups) was used as a swelling agent to
treat Na"-montmorillonite and was intercalated into
clay nanolayers to form the O-MMT. Then, the O-
MMT was used as a part of the chain extender replac-
ing a part of 1,2-diaminopropane to form PU/clay
nanocomposites. Our research interest focused on the
effect of the O-MMT content upon the mechanical
properties of the nanocomposites. Tensile stress, elon-
gation at break, thermal stability, glass-transition, and
water absorption of the O-MMT/PU nanocomposites
were all investigated.

EXPERIMENTAL
Materials

Montmorillonite (Zhangjiako Qinghe Chemical Fac-
tory, China) with a cationic exchange capacity of
78.6meq/100g and 1,6-hexamethylenediamine (Tian-
jing Chemical Reagent Co., China) were used as re-
ceived. 4,4'-Diphenylmethane diisocyanate (MDI,
Yantai Wanhua Chemical Reagent Co., China) and
polytetramethylene glycol (PTMEG, Mn = 2000, Du-
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Scheme 1 Reaction pattern followed to obtain the PU segments.

pont) were dehydrated under vacuum at 60°C for
24 h. Dimethylformamide (DMF, 99%, Tianjing Chem-
ical Reagent Co.) and 1,2-diaminopropane (Shanghai
Chemical Reagent Co., China) were dried over cal-
cium hydride for two days and then were distilled
under vacuum.

Preparation of organophilic clay (O-Mont)

Montmorillonite was first screened with a 300-mesh
sieve to remove impurities. 20g of the screened mont-
morillonite was gradually added to a previously pre-
pared solution of 10.6g Na,CO,; dissolved in 200
X 1073 m® H,0 at 70°C, and the resultant suspension
was vigorously stirred for 24 h. Then the treated mont-
morillonite was filtered and washed by de-ionized
water until complete removal of CO32' ions, ensured
by titrating with 0.1N CaCl,. The filter cake was then
dried at 70°C for 24 h in vacuum, ground, and
screened with a 300-mesh sieve to obtain the Na-
montmorillonite.”® 10g of the screened Na-montmoril-
lonite was gradually added to a previously prepared
solution of 1,6-hexamethylenediamine 12.5g dissolved
in 1000 X 1072 m® of 0.01N HCI at 70°C, and the
resultant suspension was vigorously stirred for 6 h.
Then, the white precipitate formed was isolated by

filtration, suspended in 400 X 1072 m® of hot water,
and stirred for 2 h. To ensure complete removal of
chloride ions, the precipitate was washed repeatedly
until no further formation of AgCl was detected after
addition of 0.IN AgNOj; to the washing water. The
product was finally filtered and dried in vacuum at
80°C for 24 h, ground, and screened with a 300-mesh
sieve to obtain the organoclay.”

Synthesis of PU/clay nanocomposites
Preparation of pure polyurethane (Scheme 1)

5g of 4,4'-Diphenylmethane diisocyanate (MDI) and
19.5g of polytetramethylene glycol (PTMEG) at a molar
ratio of 2:1 were dissolved in DMF solvent, then the
whole solution was mixed under nitrogen atmosphere
for 2 h at 90°C to form a prepolymer. Then, 0.74g of
1,2-diaminopropane was gradually added to the pre-
polymer with vigorous stirring at room temperature for
4 h to complete the reaction. The PU films were formed
by casting the solution onto glass plates and then remov-
ing the solvent in vacuum at 70°C for 36 h.*°

Preparation of PU/clay nanocomposites (Scheme 2)

Following the procedure of synthesizing PU prepoly-
mer as described in the previous section, different



536

L1

H
It
CHy CHy CHz—CHz—()<}> C-N-

[l

+
[+ 0.05 NI, CH,CH,CH,CH, CHyCH,NH,;

NI ET AL.

Mont

DMF

t=2h

Mont---

T=80C

Hz
NCN

A el e

H

0 0 J
' @ @—N C—N-CH,CH,CH,CH,CH,CH;

NH,

+ 0.5NH;~CH, —CH-CHj

cts
NH,CH,~CH-NH
0 H

m

Mont

DM

F

T=room temperature
t=3h

g P H

L1}

c-r'v—@cm—@ N~C -0~ CHy CHy CHyCHy04-C-N
HOH

NH-C- N—CHZCHzCHZCHZCHZCHZ N-C—N- CH

@cm@r\m _NHICH- CHZNH2

(V]

Scheme 2 Reaction pattern followed to obtain the PU/clay segments.

amounts of the O-MMT (1, 2, 3 wt %, etc.) were mixed
with 20 X 107> m® DMF and then added to the pre-
polymer with vigorous stirring at room temperature
for 2 h. Subsequently, 0.74g of 1,2-diaminopropane
was gradually added to the mixture with vigorous
stirring for 4 h to complete the reaction. The PU/clay
films were obtained in the same way as the PU films.*

Polymer recovery from PU/clay nanocomposites

10 X 107> m” toluene was added to 1g of the synthesized
PU/clay while stirring for 2 h at room temperature.
Then, 20 X 1072 m® of a 1% LiCl solution in DMF was
gradually added to the suspension. The mixture was

stirred for 48 h to perform the reverse ion-exchange
reaction, and then the solution was centrifuged at
10,000rpm for 2 min. The supernatant liquid after cen-
trifugation was poured into methanol, and the resultant
solid was filtered and dried in vacuum.**

Characterization

X-ray diffraction measurements (XRD) were per-
formed with a D/Max-2400 Rigaku diffractometer
with Ni-filtered Cu Ko« radiation (A = 0.15418nm). The
scanning rate was 2°C min~' over a range of 260 = 2~
15°. Molecular weights of the polymer were deter-
mined by a Waters 2695-2410 gel permeation chroma-
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Figure 1 XRD patterns of (a) montmorillonite, and (b) or-
ganomodified montmorillonite.

tography (GPC) system with DMF as the solvent. The
calibration curves for GPC were obtained by using
polystyrene as standards.

Differential scanning calorimetry (DSC) data were
obtained with a DSC822E under N, atmosphere with a
heating rate of 10°C min~'. The thermogravimetric
analysis (TGA) was carried out on a Perkin—-Elmer 7
Series thermal analysis system at a scan rate of 10°C
min~' in a nitrogen atmosphere. Tensile properties of
the sample were tested with an Instron mechanical
tester (model DY-35) at a crosshead speed of 0.5m
min~". The I-shaped specimens were prepared with 4
X 107°m in width, 16 X 107°m in length, and 2
X 107*m in thickness. For each datum point, five
samples were tested, and the average value was taken.

The water absorption methods of pure PU and PU/
clay nanocomposites was carried out according to the
specifications of ASTM D570, and the test specimens
were cut in the shape of 76.2 X 25.4 X 1xX10~°m. The
specimens were dried in vacuum at 80°C for 24 h,
cooled in a desiccator, and then immediately weighed
with 0.001g precision to get the initial weight (W).
Subsequently, the conditioned specimens were en-
tirely immersed into a container of deionized water
maintained at 25 = 0.2°C for 24 h, taken out of the
water, and the surface water on specimens was re-
moved with a dry cloth. Then, the specimens were
weighed immediately to get the final weight (W,). The
percentage of increased weight of the samples was
calculated with 0.01% precision by using the formula
(W,-Wo)/ W2

RESULTS AND DISCUSSION
Polymer synthesis

In Schemes 1 and 2, the synthetic process and simpli-
fied chemical structure of PU and O-MMT/PU are

shown. As shown in Scheme 1, in the first step, PT-
MEQG reacts with MDI at a 2M ratio of PTMEG/MDI to
form an isocyanate-terminated prepolyurethane. In
the second step, stoichiometric amount of 1,2-diami-
nopropane was used as a chain extender to produce
PU. Correspondingly, as reported in Scheme 2, O-
MMT was used as chain extender to produce
O-MMT/PU nanocomposites in the second step. Fi-
nally, in the third step of the reaction, 1,2-diaminopro-
pane was added, leading to formation of the
O-MMT/PU nanocomposites with the O-MMT con-
tent varying regularly from 0 to 50 wt %.

Structural characterization

The X-ray diffraction patterns of the montmorillonite
and the O-MMT are shown in Figure 1. The first
diffraction peaks at 26 = 7.04° and 6.30°, correspond-
ing to a spacing of montmorillonite and O-MMT plate-
lets of 1.255 and 1.403 nm, respectively, indicate that
the silicate layer galleries in the montmorillonite were
intercalated by 1,6-hexamethylenediamine. The sec-
ond diffraction peaks at 26 = 8.38°, the peak of mont-
morillonite weaker than that of O-MMT, could be
explained by the fact that the silicate layer galleries in
the montmorillonite were also intercalated by 1,6-
hexamethylenediamine at 260 = 8.38° and the silicate
layer galleries in the montmorillonite were increased.

The X-ray patterns of PU, PU5, PU10, PU20, PU30,
and PU40 are shown in Figure 2. It is clear that in the
XRD patterns of PU/clay nanocomposites, peaks at 26
= 6.30 and 8.38° were all totally absent. The situ-
polymerization of 1,6-hexamethylenediamine and pre-
polymer form PU/clay nanocomposites in the silicate
layers, and the silicate layers were larger. Such results

Intensity (a.u.)

5 10 20
206 (9

Figure 2 XRD patterns of PU and O-MMT/PU nanocom-
posites: (a) PU; (b) 5% O-MMT/PU; (c) 10% O-MMT/PU; (d)
20% O-MMT/PU; (e) 30% O-MMT/PU; (f) 40% O-MMT/
PU; and (g) 50% O-MMT/PU.
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Figure 3 The molecular weight (Mn) and the polydispersity of PU and O-MMT/PU at different chain extender ratios: (a) the

molecular weight (Mn); (b) the polydispersity.

suggest the exfoliation of the clay platelets in the
polymeric matrix.**>° When the clay weight fraction
reaches high content (O-MMT, 40.0 wt %), the mont-
morillonite platelets were also dispersed in the poly-
mer matrix.

The molecular weight (Mn) and polydispersity (D)
of PU, O-MMT/PU nanocomposites, and recovered
PU from organoclay/PU nanocomposites at different
chain extender ratios are given in Figure 3. It was
found that Mn and D were strongly affected by the
addition of O-MMT. Compared to the pure PU, Mn
and D of 1% O-MMT/PU, 5% O-MMT/PU, and 8%
O-MMT/PU showed only a slight change at different
chain extender ratios. Mn of those nanocomposites
was higher than that of pure PU. Such results suggest

that the mechanical properties of 1% O-MMT/PU, 5%
O-MMT/PU, and 8% O-MMT/PU nanocomposites
would be better than those of pure PU, and the ther-
mal properties of those nanocomposites would be
higher than those of pure PU.>! Results are presented
and discussed in the following.

Physical properties

Differential scanning calorimetry

The thermal properties of pure PU and O-MMT/PU
nanocomposites were studied by DSC, and these re-

sults are shown in Table I. In Table I, the glass transi-
tion temperatures of O-MMT/PU nanocomposites
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TABLE 1
Endothermic Transitions and Water Absorption of Pure PU and O-MMT/PU
Nanocomposites
O-MMT content T, Endo 1 peak, Endo 2 peak, Water absorption

(wt %) (°C) T (°C) T (°C) (%)
0 (pure PU) —61.5 2.61 42.18 492
1 —61.0 9.77 — 3.37
5 —58.0 10.40 — 3.38
10 —60.0 13.59 — 3.76
20 —60.0 12.08 — 212
30 —61.0 9.46 — 2.04
40 —60.0 8.92 — 2.83
50 —60.5 9.77 — 3.15

“ glass transition temperatures.

were between -58 and -61.0°C, being nearly identical
to that of pure PU at —61.5°C. The effect of O-MMT,
dispersed in the free volume of PU, was insignificant
in influence on the glass transition temperature of
pure PU. The pure PU exhibited two broad endother-
mic transitions at higher temperatures (Endo 1 and
Endo 2) and a tiny exothermic transition at 100.0°C.
O-MMT/PU nanocomposites had only one broad en-
dothermic transition (Endo 1) at a higher temperature
than that of the pure PU (Endo 1). This trend might be
explained as two phases in the polymer matrix: Endo
1 in the pure PU, identified with disruption of soft
segment/hard segment bonds or disruption of short-
range order within the hard segment microdomains;
and Endo 2, which was related to the breakup of
interurethane hydrogen bonds.”> When O-MMT was
used as chain extender to replace a part of the 1,2-
diaminopropane, the montmorillonite was dispersed
in the polymer matrix. The chain motions of polymer
molecules in these silicate layers were barred and
limited. The crystallizability of O-MMT/PU nanocom-
posites was reduced, and Endo 2 disappeared for O-
MMT/PU nanocomposites.*® These results can be in-

Weight Residual,%

0 i : . :
250 350 450 550 650

Temperature(C)

terpreted by the intercalative behavior of polymers as
shown in Figure 2.

TGA analysis

The TGA analysis of pure PU and O-MMT/PU nano-
composites is shown in Figure 4. In Figure 4, in the
temperature range from 250 to 650°C, the O-MMT/PU
nanocomposites displayed higher thermal resistances
than that of pure PU. This could be explained as that
the chain motions of polymer molecules in these sili-
cate layers were barred and limited, and therefore
thermal properties of O-MMT/PU nanocomposites in-
creased: the more polymer molecule chains attached
in the intercalation, the higher was the thermal capa-
bility.>*

Stress-strain behavior

The experimental influence of the O-MMT content on
the tensile mechanical properties of the nanocompos-
ites is shown in Figure 5. It was found that the O-MMT
content had a remarkable effect on the mechanical
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Figure 4 Dynamic TGA thermograms of PU and O-MMT/PU nanocomposites in a nitrogen environment: (a) PU; (b) 1%
O-MMT/PU; (c) 5% O-MMT/PU; (d) 8 and 10% O-MMT/PU; (e) 20% O-MMT/PU; (f) 30% O-MMT/PU; (h) 40 and 50%

O-MMT/PU.
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Figure 5 Effect of the O-MMT content on the tensile me-
chanical properties of O-mont/PU nanocomposites.

properties of the nanocomposites. As shown in Figure
5, both the tensile strength and the elongation at break
of the O-MMT/PU increased with increased O-MMT
content in the range of 1-5 w t%. When O-MMT
content was in the range of 1-8%, the tensile strength
and the elongation at break were higher than those of
pure PU. Compared to the pure PU, the tensile
strength and the elongation at break of the 5 wt %
O-MMT content were increased by more than 157 and
145%, respectively. When the O-MMT content was
higher than 5 wt %, both the tensile strength and the
elongation at break of the O-MMT/PU decreased.
All of these results could be explained by M,, of the
pure PU and the nanometer O-MMT layers. When the
O-MMT content was in the range of 1-8%, M, of
O-MMT/PU nanocomposites was higher than that of
pure PU, and the nanocomposites possessed better
mechanical properties. When the O-MMT content at-
tained the range of 8—-40 wt %, M, of O-MMT/PU
nanocomposites was lower and D of O-MMT/PU
nanocomposites was higher than for pure PU; there-
fore, the tensile strength and the elongation at break of
the O-MMT/PU decreased.”® When the O-MMT con-
tent was higher than 40 wt %, the O-MMT began to
aggregate (as suggested by the XRD in Fig. 2); such

NI ET AL.

would lead to a further reduction of the tensile
strength and the elongation at break of the nanocom-
posites.

The water absorption results of PU and
O-MMT/PU nanocomposites are given in Table L. It
shows that the water absorption of O-MMT/PU nano-
composites were all slightly lower than that of pure
PU.**3%3¢ Detailed research on these phenomena is
ongoing.

CONCLUSION

Novel polyether polyurethane/clay nanocomposites
were synthesized successfully with organic-modified
montmorillonite as chain extender, and it was ob-
served that the O-MMT was completely exfoliated in
such a PU matrix even at very high content (40 wt %).
The structures of PU were affected by the presence of
the silicate layers in these nanocomposites, as evi-
denced by their molecular weight and glass transition.
The mechanical properties of these O-MMT/PU nano-
composites were strongly influenced by the content of
O-MMT, and the tensile strength and the elongation
achieved maxima when the O-MMT content was 5%.
Additionally, the water absorptions of O-MMT/PU
nanocomposites in the range of the 1-40 wt % O-MMT
content were all slightly lower than that of pure PU.
The thermal properties of O-MMT/PU nanocompos-
ites were also higher than those of the pure PU.
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